If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k+16=59
We move all terms to the left:
k^2-8k+16-(59)=0
We add all the numbers together, and all the variables
k^2-8k-43=0
a = 1; b = -8; c = -43;
Δ = b2-4ac
Δ = -82-4·1·(-43)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{59}}{2*1}=\frac{8-2\sqrt{59}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{59}}{2*1}=\frac{8+2\sqrt{59}}{2} $
| 1=v–25 | | 6^x-3=1296 | | 8(x-8)+26=8x-38 | | 7(s+2)=77 | | 4x+12=×-6 | | 8x-12=-172 | | x12=1060 | | 13v+2=11+5v | | 16.8=8c-8 | | -7+5w=-17 | | 180=108+x | | 9-7s=9 | | x5=2135 | | 116-w=212 | | 4/2x-10=18 | | 90=67+x | | 3e-9=-2.4 | | -5(2x-1)=2(x-49)-41 | | 6x−2=−26 | | X/2+1+3x/8=-9 | | 49+7x=2(−x+2)−9 | | 13=u/2+11 | | Р(х)=2x^3+7x^2+12x | | 26=7x+12 | | 18x+55=12x+67 | | 122=7x−18 | | 90=37+x | | 1/2(x-84)=10+7x | | 6p=49.8 | | 180=49+x | | (3x+21)=180 | | 1/6b+3=7 |